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XII. Growth of Structure in the Universe

The Big Bang theory describes a universe that is perfectly homogeneous, yet the
real universe is decidedly not so. An important question is whether the structure
that we observe a serious problem for the Big Bang or is it inconsequential - e.g.,
in the same way that the surface of the Earth is high structured on small scales but
nearly a perfect spheroid on large scales. The answer is that structure in the universe
is indeed compatible with Big Bang theory. The current thinking is that the seeds of
the large structures that we observe today (galaxies, galaxy cluster, superclusters,
etc.) began as small density perturbations (of order, say, 10−4 initially) that grew
as a result of gravitational instability into the structures that we observe today. The
question then becomes what was the origin of the perturbations, and one possibility
is that they arose at the end of the inflationary epoch as described in the previous
chapter. Again, the theory of how such perturbations arose is beyond the scope of
this book. This chapter will focus on how such perturbations can be characterized
and how they grow in time. This chapter is meant to be only an introduction to
the subject - a fuller treatment may be found in Peebles Large Scale Structure in
the Universe.

A. Nonlinear Growth for Top-Hat Perturbations

For the moment, consider a universe in which the mean density is everywhere
exactly the critical density except inside a spherical region where there is a slight
excess or deficit in density relative to the outside. To a first approximation, the
sphere will evolve as either a miniature closed or open universe, and so relative to its
surroundings, it will either stop expanding eventually and collapse (forming, say, a
cluster of galaxies) or expand at a rate in excess of its surroundings and ultimately
form a void, or region of low density. As will be shown later, such behavior occurs
primarily during the matter-dominated era after recombination. Before that time
matter is tightly couple to the radiation field, and the radiation pressure prevents
the perturbation from growing.

The equations describing the growth of the perturbation can be derived as
follows. First, consider an overdense perturbation during the matter dominated era
after recombination. A perturbation is characterized by two parameters. Take a
sphere of radius r, density ρ. Let v = ṙ be the velocity of a particle on the surface
relative to the center. The total mass is M = (4/3)πr3ρ. Let α = GM/r − 1

2v
2 be

the energy per unit mass of a particle on the surface. Thus, the parameters that
characterize the perturbation are the mass M and the energy parameter α. This
equation can be integrated just as was done for the cosmological models in Chapter
5; the result is

r =
GM

2α
(1− cos θ) (12.1)
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t =
GM

(2α)3/2
(θ − sin θ) (12.2)

Note that if r were the cosmological radius R, then α would have the value 1
2c

2.

If the perturbation remained perfectly smooth, it would stop expanding at some
point and try to recollapse back to a singularity. In practice, irregularities in it also
grow, and if things are dissipationless, the matter will eventually form a virialized
system.

The maximum radius is reached when v = 0:

rmax =
GM

α
. (12.3)

The total energy in the perturbation is

E = W = −3

5

GM2

rmax
. (12.4)

If the perturbation collapses and conserves energy (no radiation and no particles
ejected), then the virial theorem gives

Wnow = −2Tnow. (12.5)

But

E = W + T = −Tnow = −3

2
M〈σ2

1D〉. (12.6)

Combining,

E = −3

5
Mα = −3

2
Mσ2

1D. (12.7)

Here, σ1D is the one dimensional velocity dispersion of the system today. Thus,

α =
5

2
σ2

1D. (12.8)

This relates the parameter α to a quantity that is observable today.

The collapse occurs at the time when θ = 2π:

tc =
2πGM

(2α)3/2
= 0.56

GM

σ3
1D

. (12.9)

The behavior of the initial growth of the perturbation is of some interest. In
Eqs. 12.2, it is possible to eliminate θ from the parametric equations and relate r
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and t directly. It is necessary to expand the right hand sides to 4th order:

r =
GM

2α

[
θ2

2
− θ4

24

]
(12.10a)

t =
GM

(2α)3/2

[
θ3

6
− θ5

120

]
(12.11)

=
GM

2α

θ2

2

[
1− θ2

12

]

=
GM

(2α3/2

θ3

6

[
1− θ2

20

]

Let

u =
[

6t

GM
(2α)3/2

]1/3
= θ

[
1− θ2

60

]
(12.12)

Then,

θ = u

[
1 +

u2

60

]
(12.13)

and finally,

r =
(

9GM

2

)1/3

t2/3
[
1−

(
6t

GM

)2/3 α

10

]
. (12.14)

The 1st order term is just the expansion of the universe. The second order term
represents the 1st order deviation from uniform expansion.

It is often convenient to express the deviations of a perturbation relative to
unperturbed Hubble flow in the form:

r =r0(1− ε) (12.15a)

ρ =ρ0(1 + δ). (12.15b)

Here, r0 and ρ0 are the radius and density of a sphere of unperturbed space with the
same mass as the perturbed region at the same time. All quantities in Eq. (12.15)
are a function of time. From conservation of mass, M = (4/3)πr3ρ, one finds that
ε = 3δ. By comparison with Eq. 12.14, the overdensity parameter δ is found to
depend on time as

δ =
3

20

(
12πt

tc

)2/3

= 1.69
(
t

tc

)2/3

, (12.15)

where the definition of collapse time (Eq. (12.9) has been used in place of α.

EXAMPLE: The Coma Cluster has a mass M = 1.5× 1015h−1 M¯ and a 1-D
velocity dispersion of σ1D = 1000 km s−1. The collapse time is tc = 3.7 × 109h−1

yrs. At recombination, t = 130, 000/
√

Ω0h2, giving an overdensity at that time of
δ = 1.8× 10−3/Ω1/3.
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The above treatment of perturbations is incomplete in that it ignores what
happens after collapse. In the ideal top-hat perturbation, material will continue to
infall after the collapse, because material outside the perturbation will still have
a negative total energy with respect to the perturbation. The global properties of
a galaxy cluster are the same whether the cluster formed from a low mass, high
overdensity perturbation where collapse was followed by significant infall or from a
larger, lower density perturbation that had little subsequent infall.

Next, consider an underdense perturbation. Here the situation is more compli-
cated because shells of material at small radii now expand faster than their lesser
perturbed counterparts at large radii, leading to shell crossing. Let

α =
1

2
v2 − (GM/r) = constant > 0 (12.16)

be the positive energy of a particle sitting on the edge of the perturbation. Consider
the perturbations growth in 2 stages:

1. Initial Growth: The equations describing the initial growth are those of an open
universe:

r =
GM

2α
[cosh θ − 1] (12.18)

t =
GM

(2α)3/2
[sinh θ − θ] . (12.19)

After a time t ≈ GM/(2α)3/2, the density contrast inside and outside the per-
turbation is of order unity. An upper limit to the void size is given by computing
r for t = t0.

The density contrast can be computed in many ways, but the easiest is to use

ΩV =
Ω0(1 + z)

1 + Ω0z
. (12.20)

Here, ΩV is the density in the void at an early epoch: ΩV = 1− δ. Solving for Ω0:

Ω0 =
ΩV

1 + z − ΩV z
=

1

1 + δz
. (12.21)

EXAMPLE: The void counterpart to the Coma cluster has α = (5/2)σ2 where
σ = 1000 km s−1, M = 1.5 × 1015h−1 M¯. This yields sinh θ − θ ≈ 11, θ ≈ 3.36,
r ≤ 17h−1 Mpc. The density contrast (with δ = 2×10−3 at z = 1400) is Ω0 = 0.29.

2. Late Growth: For unusually underdense perturbations with evacuation times
small compared to the age of the universe, there is a significant shell phase
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- the void empties out and the material piles up in a surrounding shell. An
approximate calculation of the growth of the shell can be done as follows. At
some early time ti, let δi be the underdensity inside the initial underdense region,
αi be the energy per unit mass of a particle on the edge of that region, and Mi

be the mass inside the region. We have (Eq. 12.16)

δi =
3αi
10

(
6ti
GMi

)
. (22)

A particle outside that region (in unperturbed space) will still see a net under-
density of

δ =
∆M

M
= δi

Mi

M
, (12.23)

where M is the total mass out to the radius of that particle. The mean energy
per unit mass of such a particle is

α ∝ δM2/3 ∝ δiM−1/3, (12.24)

or

α = αi

(
Mi

M

)
. (12.25)

This equation give the energy per particle at a distance r from the center [with
M = (4/3)πr3ρ0]. The total energy out to some radius or mass is

E =
∫ r

0
α(r′)4πr′

2
ρ0dr

′ =
3

2
αiM

(
Mi

M

)1/3

=
3

2
αiMi

(
M

Mi

)2/3

. 12.26

.

Assume that the void grows in a self-similar fashion:

r = ri

(
t

ti

)γ
, M ∝ ρr3. (12.27)

But ρ ∝ 1/t2, so

M = Mi

(
t

ti

)3γ−2

. (12.28)

Note also that the velocity of the shell edge is v = ṙ = γ(r/ri)(t/ti)
γ−1. Then

E =
3

2
αiMi

(
t

ti

)(2/3)(3γ−2)

=− GM2

2r
+
Mv2

2

=− GM2
i

ri

(
t

ti

)5γ−4

+
1

2
Miγ

2
(
ri
ti

)2 ( t
ti

)5γ−4

.

12.29
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This equation is meaningful only if 2γ − (4/3) = 5γ − 4, or γ = 8/9. Now, ri ≈
GMi/(2αi), ti ≈ GMi/(2αi)

3/2. Combining,

r ≈ (2αi)
1/3(GMi)

1/9t8/9. 12.30

This finally gives the size of a void after a long period of time given the parameters
of the initial underdense region. More detailed calculation (Fillmore and Goldreich,
sometime??) suggest that a factor 1.6 belongs in front.

We are now in a position to calculate the size of the void counterpart of the
Coma cluster. The Coma cluster presumably consists of some initial dense region
(with parameter αi and Mi) plus accumulated infall over time. If M is the total
mass now and Mi was the initial mass, then the total energy now is

E =
3

2
αiMi

(
M

Mi

)1/3

. (12.31)

Thus, αiM
1/3
i = 2E/(3M2/3) = σ2M1/3. In the void counterpart, if the correspond-

ing shell were just now being gobbled up, then

rV ≈ 2G1/9(σ2M1/3)1/3t8/9. (12.32)

Now M = 1.5 × 1015h−1 M¯, σ = 1000 km s−1, t = (2/3)H−1. Thus, rV =
13h−1 Mpc which correspond to about 1300 km s−1 in velocity space.

All of the above discussion assumes that the unperturbed universe is critically
bound Ω0 = 1. What if the universe is, in fact, open? Today, only a small number
of density peaks will still be of just the right density to still be in a state of collapse.
Virtually all above-critical regions of the universe will have already collapsed, and
all low density regions will be exanding without change. If we define a critical
redshift zc ≈ 1/Ω0, then all growth will have occured before that redshift, and all
structure that we observe today will have been frozen at zc.


